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Prediction of Vertical Tail Maneuver Loads
Using Backpropagation Neural Networks

David Kim* and Maciej Marciniak’
Embry-Riddle Aeronautical University, Daytona Beach, Florida 32114

Federal aviationregulations require that structures critical to the safe operation of an aircraft must not fail within
their expected lifetimes due to damage caused by the repeated loads typical to its operations. A backpropagation
neural network has been used to predict maneuver-induced strains in the vertical tail spar of a Cessna 172P.
Linear accelerometer, angular accelerometer, rate gyro, and strain gauge signals were collected during flights
using a portable data acquisition system for Dutch roll, roll, sideslip, level turn, and push-pull maneuvers. Sensor
signals were filtered and used to train the network. The strains in the vertical tail spar were predicted successfully
by the network to within 50 ¢ of their strain gauge values. This is an inexpensive and effective technique for
collecting vertical tail load spectra for small transport airplanes already in service where installation of strain

gauges are impractical.

Nomenclature

= lateral and normal acceleration measured near
the airplane center of gravity

= constant added to the value of the derivative
of the neuron activation function during training
to prevent neuron saturation

= lateral and normal acceleration measured
at the airplane tail cone

W; = weights

; = input signals

= output signals
; = hidden signals
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F' offset
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Introduction

EDERAL aviationregulationsrequire that structures critical to

the safe operation of an aircraft must not fail within their ex-
pected lifetimes due to damage caused by the repeated loads typical
to its operations. This requirement generates the need for evalua-
tion of fatigue life of all critical aircraft structures. To calculate the
fatigue life of a given structure using this method, one must know
the loading, that is, the in-service usage spectra of this structure.'?
For aircraft wings, associated structures, and accessories, this in-
formation is available from the Federal Aviation Administration
FAA/NASA VGH (velocity, normal acceleration, altitude) study.?
However, there is little or no comparable information for empen-
nage flight loads of the type of airplanes included in that study.
If a comprehensive in-flight load database is to be created, a large
number of aircraft used in a variety of flight conditions has to be
monitored. This suggests that the best system for the task is one
that is easy to install and maintain. Clearly, an efficient, practical,
and cost-effectivemethod of measuring the empennage loads in air-
craft is needed similar to the NASA VGH recorder that 1) can be
mounted in a convenientremote location in the airplane, 2) does not
require installation of strain gauges that are often impractical for
airplanesalready in service, and 3) is not expensive. Thus, the main
focus of this paper is to find some method of relating data collected
near the aircraft center of gravity to strains occurring elsewhere, for
example, in the vertical tail spar.
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Previous Works

The NASA VGH program was the largestand the longestrunning
in-flight load monitoring program for general aviation aircraft. In
the United States, it also represents the only comprehensive general
aviation flight loads spectraprogram. Data for 35,286 h of operation
from 95 airplanes were evaluated and presented as part of a fatigue
evaluation method for wings in the FAA report AFS-120-73-2.! The
reporton the VGH project, DOT/FAA/CT-91/20,> was publishedin
1993 and focused on normal (c.g. Nz) accelerations. The need for
a similar program to evaluate fatigue life of vertical aerodynamic
surfaces such as fins, rudders, and winglets, was expressed by the
authors of the report. Because only the accelerations near the center
of gravity were measured, this projectleft the problem of empennage
fatigue loads unaddressed. In Europe, the Netherlandsis a leaderin
flight loads monitoring programs. Cooperation among the Dutch
National Aerospace Laboratory, NLR; the Dutch national airlines,
KLM; and the Fokker company resulted in a year-long in-flight tail
loads monitoring program of a Fokker 100 instrumented with strain
gauges .’

In the area of flight loads predictions,the U.S. Navy demonstrated
that it is possible to predict strains at points in the structure from
the flight parameters collected? In this case, c.g. Nz, wing sweep
angle, angle of attack, roll rate, Mach number, altitude, and weight-
on-wheels indicator were used to predict strains at a point on aft
fuselage of an F-14B. Another research effort by the U.S. Navy ap-
plied neural networks to predict flight loads in the main rotor blades
of a helicopter® The inputs to the network were load factor; longi-
tudinal, lateral, pitch, roll, and yaw accelerations; airspeed; aircraft
mass; rate of climb; rotor speed; rotor control servo position; and
stabilator position. Similar work was performed at Virginia Poly-
technic Institute and State University to predict the time-varying
mean and oscillatory components of the tail boom bending loads
and the pitch link loads.” For this application, the input variables
were pitch rate, roll rate, yaw rate, vertical acceleration, lateral ac-
celeration, longitudinal acceleration, longitudinal control position,
and lateral control position.

Current Work

To collect the flight loads spectra from a fleet of small transport
airplanes, the cost and ease of installation of the loads monitoring
system is a major issue. For many of these airplanes, even a cost
of U.S. $2,000 borders on being excessive. Our motivation, then,
is to find the minimum set of sensors needed to accurately predict
strains in the empennage structure of a small transport aircraft, the
minimum threshold value of significant strains, and the correlation
between sensor output and the vertical flight loads. The testbed
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aircraft is a Cessna 172P. The inputs to the neural networks were
provided by the signals collected in-flight from the three rate gyros
and three angularaccelerometersabout each of the aircraftaxes, two
linear accelerometers measuring the z-axis and the y-axis accelera-
tionsin the vicinity of the aircraftc.g.,and two linearaccelerometers
measuring the z-axis and the y-axis accelerationsin the aircraft tail
cone. The aircraft also had sensors for airspeed, altitude, and strain
gauges on primary structures.

Background

Artificial neural networks are information processing systems
that attempt to emulate some of the processing characteristics of
the human brain. Much like its biological counterpart, an artificial
neural network consists of a large number of heavily interconnected
simple processing elements. This brainlike organization gives the
neural network parallel processing and learning capability that is
adept in solving tasks that are very difficult to accomplish using
traditional computer programs. Most neural networks, like the hu-
man brain, require iterative feedback training. Depending on the
task at hand, either supervised or unsupervised training is needed.
Supervised training means that the neural network is given a set of
input-correctoutput pairs to train on. Unsupervised training means
that the network is only given the input data to train on. In gen-
eral, prediction problems are better handled by supervised training.
Neural networks are often viewed as blackboxes because, often,
there is no easy way of tracing or mathematically representing the
internal processes occurring within the network. This is particu-
larly true for complex problems. Also, finding the right arrange-
ment of processing elements for a given problem usually involves
significant amounts of trial and error because there is no system-
atic method presently available for determining this information
a priori.

Neural networks have two main components: the processing ele-
ments and the connectionsbetween them. The processingelements,
sometimes called neurons or nodes, function as information proces-
sors, and the connections function as information storage. Figure 1
shows a processing element with connections going in and out of it.
Each processingelement first calculates a weighted sum of the input
signals, then applies a transfer function to this sum and outputs the
result. Transfer functions are generally nonlinear and are used to
solve nonlinear problems.

Nodes within a network are arranged in layers. A typical neural
network consists of an input layer, a hidden or processinglayer, and
an output layer. The input layer is where the initial data enter the
network. The hidden layer is where most of the processing takes
place. If the complexity of a given problem is high, more hidden
layers may be required. Finally the output layer yields the desired
information.

The neuron arrangementof the network shown in Fig. 2 is typical
of a backpropagationneural network. A three-layerneural network
with one layer of hidden units in the feedforward phase is shown.
During the backpropagation phase of learning, signals are sent in
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Fig. 1 Processing element.

Fig. 2 Three-layer neural network.

the reverse direction. The name backpropagation comes from the
training method used during the learning process, back propagation
of error. This training method is simply a gradient descent method
that minimizes the total squared error of the output computed by
the net.

Experimental Apparatus

A speciallyinstrumented Cessna 172P aircraft was used to collect
the flightloads data. Two ColumbiaResearchModel 2681 strain sen-
sors were located on the front spar of the vertical tail. Two Columbia
Research SA-107BHP linear accelerometers were mounted to the
tail cone bulkhead to provide acceleration measurements in the em-
pennage. The remaining two linear accelerometers(same type) were
located in the cabin of the aircraft to provide acceleration measure-
ments of the aircraftc.g. Three Murata Gyrostar ENV-05H-02 solid-
state rate gyros and three Shaevitz angular accelerometers were
installed in the baggage compartment on a removable instrument
pallet. One rate gyro and one angular accelerometer were provided
for each of the aircraft major axes: x, y, and z. The rate gyros and
the angular accelerometers were added to provide a more direct
measurement of the necessary kinematic variables because previ-
ous investigations by the authors showed that exclusive use of the
linear accelerometers was not sufficient to predict the empennage
flight loads for small airplanes with the desired accuracy. These
kinematic variables were used as inputs to the neural networks. The
signals from the sensors were collected by an IOTech DagBook 216
portable data acquisition system. The DagBook 216 was equipped
with an IOTech DBK 15 universal current/voltage input card and
an [OTech DBK 43 strain gauge module. The DBK 15 card was
used to collect the linear accelerometer, rate gyro, and angular ac-
celerometer signals, whereas the DBK 43 card collected data from
the strain gauges. A portable computer was used to record the data
during flight. Figure 3 shows the locations of the sensors and the
data acquisition system in the aircraft.

Testing Procedure

The data were acquired in-flight from a series of maneuvers per-
formed at an altitude of 3000 ft. Straight and level flight was cho-
sen for the baseline, and the strain sensors were adjusted to output
0.0V for this condition. Sensorreadings were recorded for sideslip-
left, sideslip-right,roll, push-pull, stabilized-g left turn, stabilized-g
right turn, and Dutchroll maneuvers. Each maneuverwas performed
at 65, 80, and 95 KIAS (indicated airspeed in knots). A maximum
load factor of 3.0 gk was reached during the push-pull maneuver.
The maneuvers and the speeds at which they were performed were
chosen to cover the full range of aircraft motions and a sizable
portion of its flight envelope. The part of the flight envelope that
was covered (Fig. 4) was judged to be sufficient for the purpose
of establishing a method of strain prediction. Two data sets were
recorded: one intended for the training of the neural networks and
one for the testing. These two data sets were recorded on different
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Fig. 3 Location of the sensors and the data acquisition system.
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Fig. 4 Approximate flight envelope covered.

days to provide differing flight conditions. In addition, a separate
file containing a typical flight profile that may be encountered by a
general aviation aircraft was recorded. This file contained a climb
simulating the initial climb after takeoff, a variety of turns, alti-
tude changes and velocity changes performed in no particular order
and at a wide range of airspeeds, and a descent and airspeed de-
crease simulating the approach to a landing. This file was recorded
to determine how well the neural networks would generalize from
the carefully staged training data when presented with the data that
may be collected during a typical flight.

Postprocessing

Preliminary neural network results indicated that the prediction
accuracy improved when the raw data was filtered prior to training
the network. A frequency spectrum analysis was performed using
DADisp 4.0. It indicated that the signals resulting from the pilot
control inputs had frequencies of 1.5 Hz or less. Therefore, a low
pass filter with a 2-Hz cutoff frequency was used with DADisp.

Neural Network Selection

The two sets of the filtered data files formed the pool of possible
inputs for the neural networks. Of the two data sets, one was used for
training and the other was reserved for testing. Signals recorded for
the prediction of the strain in the vertical tail were c.g. and tail Ny,

Table1 Maximum and minimum strains observed
for each maneuver

Vertical tail

Maximum Minimum
Maneuver strain pe strain pe
Dutch roll 165 —178
Roll 29 —119
Sideslip left 4 -92
Sideslip right 17 —-68
Stabilized-g turn left 14 —-69
Stabilized-g turn right 4 =71
Push-pull =5 -61

roll and yaw accelerations, and roll and yaw rate. For the neural
networks to learn properly the relationship between the strains and
the kinematic variables, the full range of measured strains had to be
represented within the training files. Table 1 shows the strains mea-
sured in-flight for each maneuver. Maximum strains in the vertical
tail occurred during roll and Dutch roll maneuvers.

The choice of a neural network type was driven by the relation-
ship between the kinematic variables and the strain being unknown
and there was no guarantee of this relationship remaining constant
throughoutthe test flight envelope. In fact, a careful analysis of the
flight-test data clearly shows that such relationship does not remain
constant. For example, during a typical sideslip maneuver, the rud-
deris deflected and the resulting side load on the vertical tail creates
the sideslip condition that results in a set of sensorreadings. On the
other hand, if the airplane is rolled abruptly with ailerons only, the
dynamics of the side load induced on the vertical tail is quite differ-
ent from that of side load induced by the rudder. Different sensors
(kinematic variables) play the dominant role, and associated time
phases are different. To cope with these variations, a modular neural
network (MNN), described in detail in Ref. 8, was chosen to handle
the problem. An MNN may be thought of as a generalizationof the
backpropagation neural network. It consists of a group of neural
networks, referred to as local experts, competing to learn different
aspects of a problem. A gating network controls the competition
and learns to assign different regions of the data space to different
local expert networks. Thus, if the relationship between the strain
and the kinematic variables changed from one maneuver to another
or from one speed to another, the neural network would still be able
to learn to predict strain for any flight condition.

Neural Network Implementation

All of the neural networks created in the course of this research
were formed, trained, and tested using the Neural Works Professional
II+ version 5.20 software. This programis capable of automatically
generating an MNN from the specified parameters. The parameters
of the networks selected are listed in Table 2.

In the search for the best signals to use for training of the neural
networks, the number of input layer neurons varied from two to
six as various combinations of inputs were tried. The number of
neurons in the hidden layer of each local expert was arbitrarily set
to 30. During initial testing this number was increased to as high as
50 with no appreciable change in network performance. All local
experts had a single neuron in their output layers; this was dictated
by each of these networks being expected to predict a single value,
the strain in the vertical tail.

The number of neurons in the hidden layer of the gating net-
work was set to 400. Gating networks with less than 400 hidden
layer neurons were tried, but the network performance decreased
substantially. The number of the neurons in the output layer of the
gating network (and subsequently the number of local experts) was
set to five. This proved sufficient inasmuch as none of the subse-
quently trained networks required the use of more than three of the
five available local experts.

The extended delta-bar-delta(EDBD) learning rule was selected.
This learning rule automatically selected and adjusted the learning
coefficient, the learning coefficient ratio, the learning coefficient
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Table 2 Parameters of the MNNs

Dependent on the combination

Number of inputs of signals used for input

Local expert hidden layer neurons 30

Local expert output layer neurons 1

Gating network hidden layer neurons 400

Gating network output layer neurons 5

Learning rule EDBD
Transfer function Tanh

Epoch Vertical tail network: 20
F' offset 0.3

transitionpoint, and the momentum term. This minimized the learn-
ing time and reduced the number of network parameters that had
to be selected iteratively. The hyperbolic tangent transfer function
was chosen for the problem, and input values were normalized and
ranged from —1 to +1.

The epoch sets the number of training pairs that are presented
to the network before the weights are updated. Larger and smaller
epochs were tried for both networks, but resulted in generally wors-
ened network performance.

The F' offset is a constant added to the value of the derivative
of the neuron activation function during training to prevent neuron
saturation. The Neural Works users guide suggests that it be set to
0.3 for a tanh activation function. F’ offsets of 0.1 and 0.2 were also
tried with no change in the results.

Results

Before the results can be evaluated, one must first establish a
baseline definition of the ideal neural network output. In view of
the problem at hand, the following guidelines were derived. First,
not all stresses that may be experienced by a structure significantly
contribute to the accumulated fatigue damage. A stress lower than
that necessary to cause failure after 107 cycles (for a given stress
ratio) is not considered to cause fatigue damage. Thus, an insignif-
icant stress region, less than 1000 psi, was conservatively defined
to exist well below the Al 2024 endurance limit stress (the material
for C172P vertical tail spar is Al 2024).

Second, within the significant stress region, a tolerance band of
+50 pe was adopted. Because eventually this method is to be used
to evaluate the fatigue life of empennage structures, the stresses
should be predicted at least as accurately as they are plotted on the
maximum stress axis of the S-N (stress vs cycle) curves. The stresses
in the S-N curves found in the Military Handbook MIL-HDBK-5E
are plotted to within 1000 psi, that is, the scatter of the data for S-N
curves is 2000 psi or greater. For Al 2024, 1000 psi corresponds
to 100 pe. Thus, the tolerance band was selected conservatively to
be £50 ue.

The results of the vertical tail strain prediction are summarized
in Table 3 and Figs. 5-8. The neural network that produced these
results was trained using y- and x-axes angular accelerometer sig-
nals collected from roll and Dutch roll maneuvers, both at 80 KIAS.
In the portion of the flight envelope covered during the data col-
lection, the only maneuver that produced significant stresses in the
vertical tail was the Dutch roll. Surprisingly, steady-state maneu-
vers, that is, sideslips, resulted only in relatively small strains. The
neural network predicted 100% of the significant strains to within
the predefined tolerance band. With the exception of the Dutch roll,
65 KIAS, training set file, the maximum error of prediction in the
significant stress region was equal to or less than £40 ue. All of the
insignificant strains resulting from the remaining maneuvers were
properly predicted.

Inall cases, as the magnitudeof the strainsincreased, the accuracy
of the predictionsimproved. In all Dutch roll maneuvers, the largest
deviation occurred in the region from —0.2 to +0.2 normalized
measured strains. The strains of these magnitudes were observed
when the aircraft was at bank and yaw angles close to 0 deg. During
this portion of the maneuver, the only control input was rudder
deflection, and for a short time the aircraft motion was similar to a
sideslip. Thus, for the strains collected in this segment of the Dutch
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Fig. 5 Dutch roll, 65 KIAS, vertical tail, testing set: strain prediction
results.
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results.
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Table 3 Summary of the results of the vertical tail strain prediction

Significant stress region

Entire data file

% Records outside
of tolerance band

Maneuver
Dutch roll, KIAS

Maximum error
of prediction ue

Maximum error
of prediction ue

% Records outside
of tolerance band

65, training set 0.6
80, training set
95, training set
65, testing set
80, testing set
95, testing set
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Fig. 8 Sideslip left, 80 KIAS, vertical tail, testing set: strain prediction
results.

roll, the network output was very similar to that for the sideslip
maneuvers shown in Fig. 8.

Conclusions

The backpropagationneural networks successfully predicted the
strain behavior that resulted from the maneuver loads in the vertical
tail structure of the C172P to within 50 p&. The x- and y-axis angu-
lar accelerometers were sufficient to train the neural networks that
were used to predict the strains resulting from the maneuver loads.
These sensors appear to be the minimum set of sensors required to
predict the strains in the vertical tail of a small transport airplane.
Althoughnotas accurateas direct measurementusing strain gauges,
the remote sensors and the neural networks approach seem suitable
for flightloads work. The method correctly predicts the magnitude,
cycle, and the sequence of the loading, that is, the complete time
trace of the maneuver-induced stress. It also has an inherent ad-

vantage that the sensor signals are far less noisy than strain gauge
signals.

The neural networks developedin this paper should be optimized
to reduce the amount of time necessary to calculate the strains and,
if necessary, to further improve the accuracy of the prediction. The
method of strain prediction developed should be verified on other
aircraft models, especially those with differentempennage configu-
rations. A fleet of small transport airplanes should be instrumented
with similar sensors to collect empennage flight loads spectra.
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